

4

Unsere Baureihen im Überblick

6

Unsere Baureihe für Räder aus Aluminium

12

Unsere Baureihen für Radschüsseln aus Stahl

16

Unsere Baureihen für gewichtsoptimierte Felgenringe aus Stahl

24

Unsere Baureihen für Spezialfelgen von Sonderfahrzeugen

28

Unsere Konzepte für die Zukunft

30

Unsere Services

© WF Maschinenbau und Blechformtechnik GmbH und Co. KG. Alle Rechte vorbehalten. Jegliche Vervielfältigung oder Veröffentlichung nur mit schriftlicher Genehmigung. Technische Änderungen vorbehalten. Alle Bilder und Zeichnungen ohne weitere Kennung: © WF Maschinenbau und Blechformtechnik GmbH und Co. KG

Drei gute Gründe, mit uns zusammen zu arbeiten

Wir sind Innovationsführer im Drücken und Drückwalzen.

Als einziges Unternehmen in unserer Branche verfügen wir über ein umfangreiches R&D-Center inklusive eigenem Versuchsmaschinenpark. Und auf das wohl Wichtigste kann sich unsere Kundschaft immer verlassen: Den Erfahrungsschatz und die außergewöhnliche Expertise unserer langjährigen Mitarbeiterinnen und Mitarbeiter.

Wir liefern Qualität.

Unsere Maschinen werden in Sendenhorst in höchstmöglicher Eigenfertigungstiefe produziert. Wir arbeiten ausschließlich mit deutschen Qualitätszulieferern, sodass wir sicher sein können, dass alle verbauten Komponenten unseren hohen Ansprüchen genügen.

Wir bieten Service.

Wir begleiten Sie während des gesamten Kaufprozesses und haben für jede Frage die richtige Ansprechperson. Nach der Inbetriebnahme ermöglichen unser umfassender Service, regelmäßige Wartung und die garantierte Ersatzteilverfügbarkeit den reibungslosen und langjährigen Betrieb Ihrer Maschine.

Endprodukte	Felgen	Radschüsseln	Felgenringe	Spezialfelgen	Endprodukte
Fahrzeugtypen 	PKW und LKW	LKW und Busse	PKW und Kleintransporter	Kleinfahrzeuge	Fahrzeugtypen ————————————————————————————————————
Material ————————————————————————————————————	Aluminium	Stahl	Stahl	Stahl	Material
Ausgangsprodukt	gegossene, geschmiedete oder rotationsgeschmiedete Vorform	Ronde	geschweißte Bandage	geschweißte Bandage	Ausgangsprodukt
Technologie 	Drückwalzen	Drückwalzen	Drückwalzen	Drücken und Bordieren	Technologie
		alternativloses Verfahren in der modernen Stahlräderherstellung	Gewichtsreduktion der Felge (bis 25 %)	Felgenherstellung OHNE Kontur-Werkzeuge	
	höhere Stabilität Gewichtsreduktion der Felgen	Kosteneinsparung bei Material und Bearbeitung (bis –20 %)	höhere Stabilität bei gleichzeitig reduziertem Gewicht	freie Programmierung der Felgenkontur	
Vorteile 	Kosteneinsparung bei Material und Bearbeitung (bis -20 %)	Produktivitätssteigerung (1 Teil in 18 Sekunden)	Kosteneinsparung bei Material und Bearbeitung (bis -25 %)	effiziente Herstellung kleinster Chargen	Vorteile
			Horizontaler/Vertikaler		
Bezeichnung 	Vertikale Felgenmaschine	Horizontale/Vertikale Radschüsselmaschine	Streckautomat und Beschneidemaschine	Vertikale Felgen-Drückmaschine und Vertikale Randbearbeitung	Bezeichnung
Baureihe	VFM	HRM / VRM	HSTA + HABS / VSTA + VABS	VFD + VRB	Baureihe

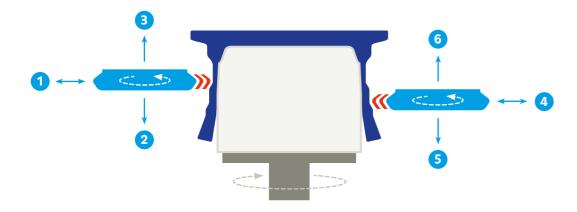
Unsere VFM-Baureihe wurde speziell für die Herstellung von einteiligen Aluminiumrädern konzipiert. Durch zwei unabhängig voneinander programmierbare Umformrollen und ein Beladekonzept, welches die zeitgleiche Be- und Entladung der Maschine erlaubt, können extrem kurze Produktionszeiten erreicht werden.

Ihre Vorteile durch den Einsatz unserer Felgenmaschinen:

- **Stabilität:** Erhöhte Festigkeit und Widerstandsfähigkeit der Felge, Erhöhung der Zugfestigkeit um 15 %, Erhöhung der Bruchdehnung um 200 %
- Gewicht: Reduktion des Kraftstoffverbrauchs und der CO₂-Emission, erhöhte Zuladung bei LKW bis 180 kg
- **Kosten:** Reduzierter Materialeinsatz um bis zu 20 %, bei gegossenen Rädern bis zu 20 % reduzierte Schmelzkosten, minimierter Zerspanungsaufwand und reduziertes Späne-Recycling

Highlights unserer Maschinen:

- vertikale Maschine in geschlossener, extrem verwindungssteifer Rahmenbauweise
- kraftvolle Hauptspindel mit drehmomentstarkem 1PH8-Motor, ausgeführt als CNC-Achse mit orientiertem Spindel-Halt (M19)
- zwei gegenüberliegende Kreuzsupporte mit insgesamt vier interpolierenden CNC-Achsen (außer VFM 600-1-2 W)
- Reitstock in extrem steifer Bauweise; hohe Anpresskraft durch zwei parallele Zylinder; Position und Anpressdruck frei programmierbar



Durch das Drückwalzen werden gegossene oder geschmiedete Aluminiumräder weiter verdichtet und somit belastbarer. Sie kommen an LKW wie auch an PKW zum Einsatz.

Maschinenbeschreibung:

- Rollenantriebe durch drehzahlgeregelte Hydro-Motoren (außer VFM 600-1-2 W)
- integrierter, ringförmiger Abstreifer um die Hauptspindel
- integrierter, innenliegender Kurzhub-Ausstoßer in der Reitstockspindel (außer VFM 600-1-2 W)
- technisch großzügig dimensionierte Lager und Führungen
- sehr gute Zugangsmöglichkeiten zum Arbeitsraum von der Front- und Rückseite
- · schnellstmögliche Be- und Entlademöglichkeit durch nur einen (!) Roboter

Prinzip des 2-Rollen-Flow-Formings an der VFM

Eine VFM für Warmumformung wird bei gegossenen Vorformen eingesetzt und ist immer ausgestattet mit:

- erhöhtem Hitzeschutz im Arbeitsraum (Spindelkühlmantel, Reitstockkühlmantel)
- erhöhter Kühlleistung für die Ölumlaufschmierung der Spindel- und Reitstocklager
- Sprüheinrichtungen für Rollen und Werkzeug (integriert in den Automatikablauf)
- Heizeinrichtung für Spindelwerkzeug (manuell, gasbefeuert, temperaturüberwacht)

Eine VFM für Kaltumformung wird bei geschmiedeten Vorformen eingesetzt und ist immer ausgestattet mit:

- Kühlmittelanlage zur Produktkühlung mit Durchflusskontrolle, integriert in Automatikablauf
- erweitertem Spritzschutz an der Maschinenverkleidung
- optionales Zubehör: Papierbandfilter, selbstreinigender Endlosbandfilter, Ölabscheider am Kühlmitteltank

1

VFM 600-1-2 W

Vertikale Felgenmaschine (VFM) für Warmumformung von gegossenen PKW-Aluminiumrädern bis 24"

Werkstückdurchmesser	min.
Werkstückdurchmesser	max.
Werkstücklänge	max.
Werkstückaufnahme	Gr. 11
Anzahl Umformrollen	standard/optional
Antriebsleistung Hauptspindel	ca.
Hauptspindeldrehzahl	ca.
Supporthub	axial
Supporthub	radial
Supportkraft	axial max.
Supportkraft	radial max.
Reitstock-Andruckkraft	max.

Handgefertigte Bronze-Führungsleisten ein Qualitätsmerkmal von WF

300 mm (12")

600 mm (24")

300 mm (12")

DIN 55027

1/2

71 kW

1000 min⁻¹

1x400 mm

1 x 300 mm

1 x 70 kN

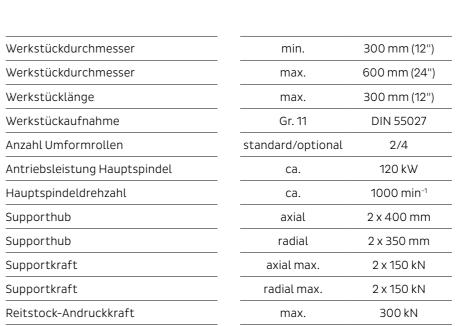
1 x 70 kN

120 kN

Optional:

- WF-Robotersystem zur Be-/Entladung
- Doppelrollenhalter zur Nutzung von 2 Rollen
- 45°-Spezialrollenhalter
- Maschinen-Vollverkleidung
- Zentralschmierung
- Dunstabsaugung

Die VFM 600-1-2 W ist eine Neuentwicklung aus unserem Haus. Durch ihren einfachen Maschinenbau ist sie besonders geeignet für Unternehmen, deren Priorität die Fertigung von Kleinserien, nicht aber Masse oder Taktzeit ist. Zudem ist sie eine äußerst kostengünstige Variante, da zusätzlich zur geringen Grundinvestition auch noch der Anwärmofen eingespart werden kann, wenn die Maschine direkt hinter einer Gießanlage installiert wird.


VFM 600-2-4 W

Vertikale Felgenmaschine (VFM)

für Warmumformung von gegossenen PKW-Aluminiumrädern bis 24" für Serienproduktion in kurzer Taktzeit

Arbeitsraum VFM 600-2-4 W

Optional:

- WF-Robotersystem zur Be-/Entladung in **einer** linearen Bewegung
- Werkzeugwechselsystem zum sicheren Wechsel von Werkzeugen
- · arretierbarer Reitstock für Positionierung zur Hauptspindel
- Reitstockausstoßer
- Doppelrollenhalter 2 Rollen pro Kreuzsupport
- 45°-Spezialhalter zum optimalen Auswalzen des Felgenhorns
- Dunstabsaugung

Turnkey-Lösung:

- Drehtellerofen zum Anwärmen der Vorformen
- · Abschreckbecken zum Abkühlen des Front-Face
- · Rotations-Sprüheinheit zum Benetzen der Vorformen
- · Robotertechnik (mit Schnellwechselgreifern)
- · Sicherheitstechnik (Schutzzäune, Zugangskontrollen etc.)
- · Überwachungs- und Fördertechnik

Anwärmbrenner


1

VFM 800-2-4 W

Vertikale Felgenmaschine (VFM) für Warmumformung von gegossenen LKW-Aluminiumrädern bis 32"

Vierfach geführter Hauptspindel-Abstreifer

Werkstückdurchmesser	min.	300 mm (12")
Werkstückdurchmesser	max.	800 mm (32")
Werkstücklänge	max.	450 mm (18")
Werkstückaufnahme	Gr. 15	DIN 55027
Anzahl Umformrollen	standard/optional	2/4
Antriebsleistung Hauptspindel	ca.	200 kW
Hauptspindeldrehzahl	ca.	800 min ⁻¹
Supporthub	axial	2 x 550 mm
Supporthub	radial	2 x 500 mm
Vorschubkraft	axial max.	2 x 275 kN
Vorschubkraft	radial max.	2 x 275 kN
Reitstock-Andruckkraft	max.	500 kN

Optional:

- WF-Robotersystem zur Be-/Entladung in **einer** linearen Bewegung
- $\cdot \ \ \text{Werkzeugwechsel} \text{system zum sicheren Wechsel} \, \text{der schweren Werkzeuge}$
- · arretierbarer Reitstock für Positionierung zur Hauptspindel
- Reitstockausstoßer
- Doppelrollenhalter 2 Rollen pro Kreuzsupport
- 45°-Spezialhalter zum optimalen Auswalzen des Felgenhorns
- Dunstabsaugung

Turnkey-Lösung:

- Drehtellerofen zum Anwärmen der Vorformen
- · Abschreckbecken zum Abkühlen des Front-Face
- · Rotations-Sprüheinheit zum Benetzen der Vorformen
- Robotertechnik (mit Schnellwechselgreifern)
- · Sicherheitstechnik (Schutzzäune, Zugangskontrollen etc.)
- Überwachungs- und Fördertechnik

VFM 800-2-4 K

Vertikale Felgenmaschine (VFM) für die Kaltumformung von geschmiedeten Aluminiumrädern bis 32"

Einer unserer Spezialisten beim Zusammenbau der Führungssysteme

Werkstückdurchmesser	min.	300 mm (12")
Werkstückdurchmesser	max.	800 mm (32")
Werkstücklänge	max.	450 mm (18")
Werkstückaufnahme	Gr. 15	DIN 55027
Anzahl Umformrollen	standard/optional	2/4
Antriebsleistung Hauptspindel	ca.	265 kW
Hauptspindeldrehzahl	ca.	800 min ⁻¹
Supporthub	axial	2 x 550 mm
Supporthub	radial	2 x 500 mm
Vorschubkraft	axial max.	2 x 400 kN
Vorschubkraft	radial max.	2 x 500 kN
Reitstock-Andruckkraft	max.	500 kN

Optional:

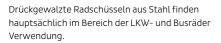
- WF-Robotersystem zur Be-/Entladung in **einer** linearen Bewegung
- $\cdot \ \ \text{Werkzeugwechsel} \, \text{system} \, \text{zum} \, \text{sicheren} \, \text{Wechsel} \, \text{der} \, \text{schweren} \, \text{Werkzeuge}$
- · Kühlmittelfilter- und Ölabscheidersysteme
- arretierbarer Reitstock für Positionierung zur Hauptspindel
- Reitstockausstoßer
- Doppelrollenhalter 2 Rollen pro Kreuzsupport
- Spalt-Rollenhalter zum Spalten von Aluminiumronden
- + 45°-Spezialhalter zum optimalen Auswalzen des Felgenhorns

Sonderlösung:

Auf Wunsch bieten wir eine Kombinationsmaschine zur Warm- und Kaltumformung plus Thixoverfahren:

- · Warmumformung von gegossenen Aluminiumrädern
- · Kaltumformung von geschmiedeten Aluminiumrädern
- Thixoverfahren (Semi-Solid-Metal-Casting) von Aluminiumrädern

Die HRM-und VRM-Baureihen wurden speziell zur Herstellung von Stahl-Radschüsseln mit hoher Festigkeit und verbesserten Laufeigenschaften für LKW und Busse, Kleintransporter, Nutzfahrzeuge und Traktoren konzipiert. Drückgewalzte Radschüsseln verfügen über eine hohe Stabilität bei geringen Wandstärken. Die hohe Produktivität unserer Maschinen wird erreicht durch kurze Beschleunigungs- und Bremszeiten des Hauptantriebs, kurze Wege und hohe Geschwindigkeiten.


Ihre Vorteile durch den Einsatz unserer Radschüsselmaschinen:

- Qualität durch einzigartige WF-3x2-Interpolierung: unabhängiges Interpolieren jedes Nebensupportes mit dem Hauptsupport auch bei gleichzeitiger Programmierung von 3 unterschiedlichen Radien, garantiert glatte und saubere Werkstück-Oberfläche
- **Gewicht:** 20 % Gewichtsreduktion bei drückgewalzten Radschüsseln im Vergleich zu gestanzten Schüsseln
- **Kosten:** Geringerer Materialeinsatz bis –20 % pro Werkstück
- Produktivität: Bei ausgesuchten Radschüsselkonturen bis zu 200 Teile/Stunde

Highlights unserer Maschinen:

- Maschine in geschlossener, extrem verwindungssteifer Rahmenbauweise
- kraftvolle, direkt angetriebene Hauptspindel ohne wartungsaufwändiges Riemengelege
- · Hauptsupport angetrieben durch zwei parallel angeordnete Servo-Zylinder
- Radialsupporte geführt durch handgefertigte Bronze-Führungen
- Reitstock als CNC-Achse ausgeführt, Position und Anpressdruck frei programmierbar

Kundenahnahme einer HRM

Maschinenbeschreibung:

- · Rollenantriebe mit drehzahlgeregelten Hydro-Motoren
- · ringförmige, 4-fach geführte Abstreifvorrichtung um die Hauptspindel
- technisch großzügig dimensionierte Lager und Führungen
- Auswurftrichter aus HADOX-Blechen zum zielgerichteten Abstreifen
- Fertigteil-Abfuhr durch das Maschinenbett auf Teilerutsche mit integriertem Kettenförderer

\leftrightarrow

HRM 800-3

Horizontale Radschüsselmaschine (HRM) für das Drückwalzen von Stahlradschüsseln für LKW und Busse

Werkstückdurchmesser
Werkstückdurchmesser
Werkstückhöhe
Werkstückdicke
Werkstückaufnahme
Anzahl Umformrollen
Antriebsleistung der Hauptspindel
Hauptspindeldrehzahl
Supporthub
Supporthub
Supportkraft
Supportkraft
Reitstock-Andruckkraft

min. 265 mm	
max.	800 mm
max.	210 mm
max.	20 mm
Gr. 15	DIN 55027
fix	3
ca.	300 kW
ca.	800 min ⁻¹
axial	650 mm
radial	3 x 210 mm
axial max.	800 kN
radial max.	3 x 500 kN
max.	350 kN

Einfaches Aufsetzen der Rondenstapel

Arbeitsraum der HRM

\leftrightarrow

VRM 600-2

Vertikale Radschüsselmaschine (VRM) für das Drückwalzen von Stahlradschüsseln für Kleinlaster/Transporter

Maschinenabnahme einer VRM

280 mm 600 mm 155 mm 11 mm

DIN 55027 2 140 kW 650 min⁻¹ 2 x 440 mm

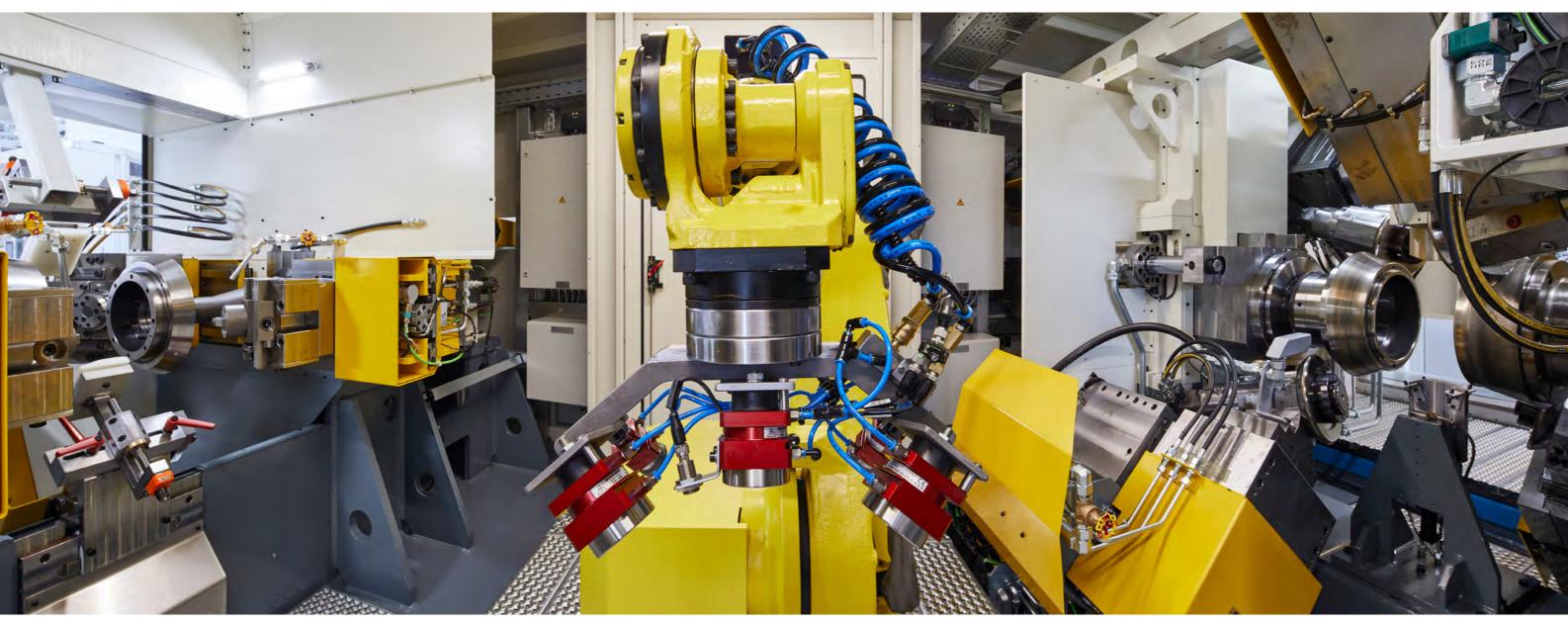
2 x 190 mm

2 x 200 kN 2 x 200 kN

300 kN

Werkstückdurchmesser	min.
Werkstückdurchmesser	max.
Werkstückhöhe	max.
Werkstückdicke	max.
Werkstückaufnahme	Gr. 11
Anzahl Umformrollen	fix
Antriebsleistung der Hauptspindel	ca.
Hauptspindeldrehzahl	ca.
Supporthub	axial
Supporthub	radial
Supportkraft	axial max.
Supportkraft	radial max.
Reitstock-Andruckkraft	max.

Der Ronden-Abstapler vereinzelt Stapel von bis zu 3x40 Ronden und führt sie dem Roboter zu.


Optional:

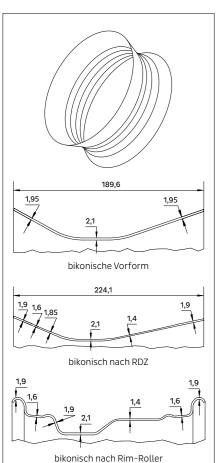
- WF-Robotersystem zur Be-/Entladung
- Abstapelvorrichtung
- Kipptischvorrichtung
- Hauptspindelausstoßer
- Werkzeugwechselwagen

Die VRM 600-2 ist eine kostengünstige Alternative zu unserer HRM. Sie wurde speziell konzipiert zur Produktion kleinerer Radschüsseln, die sonst oft auf Pressen hergestellt werden. Mit der VRM bieten wir die Möglichkeit, die Vorteile des Drückwalzens auch hier zu nutzen.

Optional:

- WF-Robotersystem zur Beladung
- Abstapelvorrichtung
- Kipptischvorrichtung
- Hauptspindelausstoßer
- Werkzeugwechselkran
- Montagebühne


Blick in den Maschinenraum eines Ring-Drückwalzzentrums (RDZ). Links: HABS 550-4 zum Beschneiden und Entgraten der Felgenringe



Außenansicht eines Ring-Drückwalzzentrums (RDZ)

Rechts: HSTA 550-4 zum Auswalzen der Felgenringe. Ein Roboter im Zentrum reicht die Werkstücke von einer Maschine zur nächsten.

Um Stahlräder mit noch geringerem Gewicht produzieren zu können, wurden Maschinen entwickelt, die den Felgenrohling (Bandage) vor dem Rim-Roller partiell ausdünnen und dabei verbreitern. Dies ermöglicht die Herstellung von Stahlrädern, die um bis zu 25 % leichter sind.

So versucht man, dem Trend der immer leichter werdenden Leichtmetall-Räder Stand zu halten.

Dazu bieten wir Ihnen ein modulares Maschinenkonzept. Sie können aus vertikalen und horizontalen Drückwalzmaschinen (HSTA und VSTA) wählen, oder gemeinsam mit der entsprechenden Beschneidemaschine (HABS und VABS) ein komplettes Ring-Drückwalzzentrum (RDZ) integrieren.

Ihre Vorteile durch den Einsatz einer HSTA oder VSTA:

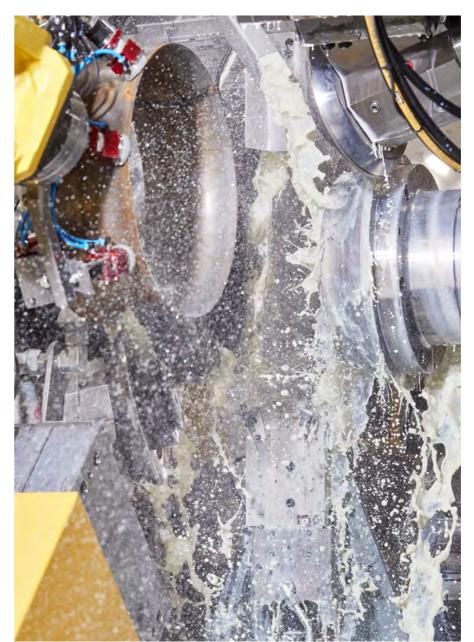
- · Stabilität: Trotz partiell geringerer Wandstärken erhöhte Widerstandsfähigkeit
- Gewicht: Reduktion des Kraftstoffverbrauches und der CO₂ Emission, erhöhte Zuladung durch geringeres Fahrzeuggewicht
- Kosten: Geringerer Materialeinsatz bis -25 %, extrem hohe Produktionsleistung bis über 300 Ringe/Stunde
- einfache Integration in vorhandene Räderfertigungslinien
- · optimaler, aufrechtgehender Zugang in den Arbeitsbereich

Alternative Fertigungskonzepte:

• Fertigung aus zylindrischer Bandage:

In der VSTA wird das partielle Ausdünnen von zylindrischen Bandagen vorgenommen. Mit Hilfe einer sog. Strecklängenerfassung wird die materialtoleranzabhängig erreichte Strecklänge kontinuierlich ermittelt und der Drückwalz-Vorgang entsprechend beeinflusst. In der nachgeschalteten VABS wird die Länge der Bandage dann einseitig beschnitten.

Vorteile:


- Konstante Länge der Bandage nach Drückwalzprozess
- · Minimaler Beschneideaufwand an nur einer Seite der Bandage
- besonders geeignet für LKW

• Fertigung aus bikonischer Bandage:

Eine bikonisch vorgeprägte Bandage wird in der HSTA partiell ausgedünnt. Aufgrund der Materialtoleranzen ergeben sich auch hier Längenschwankungen, die zunächst ignoriert werden, um keine Taktzeiten zu verlieren. In der HABS werden die Bandagen anschließend taktzeitneutral beschnitten, entgratet und damit auf eine einheitliche Länge gebracht.

Vorteile

- Konstante Länge und Wandstärke der Bandage nach dem Bearbeitungsprozess
- Drückwalzen über die Bandagenränder möglich, da Bandage nicht im Spannfutter gespannt
- Erleichterte Bearbeitung im Rim-Roller durch bikonische Form optimale Taktzeiten erreichbar

An einer HABS werden die Ronden im zweiten Schritt beschnitten und entgratet.

Gewichtsoptimierte PKW-Felge

Maschinenbeschreibung der Drückwalzmaschinen (HSTA/VSTA):

- · Haupt- und Reitstockspindel angetrieben und "Master-Slave"-gekoppelt
- $\cdot \ \ \mathsf{CNC}\text{-}\mathsf{gesteuertes} \ \mathsf{Abstreifer}\text{-}\mathsf{System} \ \mathsf{für} \ \mathsf{schnellstm\"{o}gliche} \ \mathsf{Entladung}$
- servo-hydraulische Vorschubantriebe für vier unabhängige Kreuzsupporte
- sämtliche Radialachsen geführt auf je vier Bronze-Führungen
- elektronisch regelbarer Rollenantrieb für jede Umformrolle

Maschinenbeschreibung der Beschneidemaschinen (HABS/VABS):

- · Haupt- und Reitstockspindel angetrieben und "Master-Slave"-gekoppelt
- hydraulische Vorschubeinheiten für Beschneide-, Arrondier- und Entgratoperation
- angetriebene Beschneide-/Entgratungseinheiten bearbeiten beide Ränder zeitgleich
- werkzeugloses Schnellwechselsystem für Beschneide- und Entgratungseinheiten
- · integrierter Späneförderer mit automatisch schwenkendem "Schwanenhals"

HSTA 550-4

Horizontaler Streckautomat (HSTA) für das Drückwalzen von bikonischen Stahlfelgenringen

Maschine ist Teil des horizontalen Ring-Drückwalzzentrums (RDZ).

Ein solches umfasst:

- Vereinzelung der Felgenringe
- Drückwalzmaschine HSTA 550-4
- Transfer von HSTA zu HABS
- Beschneidemaschine HABS 550-4
- Teile-Kippstation hinter HABS
- · Vollverkleidung der Anlage

Drop Center-Durchmesser	min.	320 mm (12,5")
Drop Center-Durchmesser	max.	550 mm (21,5")
Werkstückbreite	min.	100 mm (4")
Werkstückbreite	max.	310 mm (12")
Werkzeugaufnahme	2 x Gr. 15	DIN 55027
Anzahl Umformrollen	fix	4
Antriebsleistung Spindeln	ca.	2 x 125 kW*
Spindeldrehzahl	max.	1500 min ⁻¹
Spindel-Vorschubhub	max.	2 x 250 mm
Spindel-Vorschubkraft	max.	2 x 150 kN
Supporthub	axial	4 x 300 mm
Supporthub	radial	4 x 160 mm
Supportkraft	axial	4 x 125 kN
Supportkraft	radial	4 x 125 kN

*Master/Slave-gekoppelt

- WF-Robotersystem zur Beladung bzw. zum Transfer der Werkstücke
- erhöhtes Maschinenbett nutzbar als Kühlmittelbehälter
- Energiesparlösungen für Hydraulik und Spindelantriebe

Ausgehend von der Mitte des bikonischen Felgenringes drückwalzt die HSTA mit jeweils zwei Umformrollen zeitgleich in beide Richtungen. Da der Ring nicht durch ein Spannfutter gehalten wird, ist ein Auswalzen des Materials bis an die Ränder des Felgenringes möglich.

Arbeitsraum einer HSTA

HABS 550-4

Horizontale Abdreh- und Beschneidestation (HABS) für das Beschneiden und Entgraten von bikonischen Stahlfelgenringen

Maschine ist Teil des horizontalen Ring-Drückwalzzentrums (RDZ).

Ein solches umfasst:

- Vereinzelung der Felgenringe
- Drückwalzmaschine HSTA 550-4
- Transfer von HSTA zu HABS
- Beschneidemaschine HABS 550-4
- Teile-Kippstation hinter HABS
- Vollverkleidung der Anlage

Drop Center-Durchmesser	min.	320 mm (12,5")
Drop Center-Durchmesser	max.	550 mm (21,5")
Werkstückbreite	min.	100 mm (5")
Werkstückbreite	max.	310 mm (12")
	2 x Gr. 8	DIN 55027
Antriebsleistung Spindeln	ca.	2 x 30 kW*
Spindeldrehzahl	max.	275 min ⁻¹
Spindel-Vorschubhub	max.	2 x 200 mm
Spindel-Vorschubkraft	max.	2 x 95 kN
Anzahl Beschneideeinheiten	fix	4
Anzahl Entgratungseinheiten	fix	2
Supporthub	axial	4 x 130 mm
Supporthub	radial	4 x 210 mm
Supportkraft	axial	4 x 25 kN
Supportkraft	radial	4 x 25 kN

*Master/Slave-gekoppelt

Optional:

- WF-Robotersystem zur Beladung bzw. zum Transfer der Werkstücke
- erhöhtes Maschinenbett
- · auf Anfrage: Rotationsfräsköpfe anstatt Beschneiderollen

Die Drückwalzoperation der HSTA erfolgt zu beiden Seiten des Felgenringes, genauso wird in der HABS das Beschneiden und Entgraten auch auf beiden Seiten ausgeführt – zeitgleich!

Arbeitsraum einer HABS

‡

VSTA 520-4

Vertikaler Streckautomat (VSTA) für das Drückwalzen von zylindrischen Stahlfelgenringen

Maschine ist Teil des vertikalen Ring-Drückwalzzentrums (RDZ).

Ein solches umfasst:

- Vereinzelung der Felgenringe
- Drückwalzmaschine VSTA 520-4
- Transfer von VSTA zu VABS
- Beschneidemaschine VABS 520-4
- Teileauswurf hinter VABS
- · Vollverkleidung der Anlage

Drop Center-Durchmesser	min.	320 mm (12,5")
Drop Center-Durchmesser	max.	520 mm (20,5")
Werkstückbreite	min.	125 mm (5")
Werkstückbreite	max.	325 mm (13")
Werkzeugaufnahme	2 x Gr. 11	DIN 55027
Anzahl Umformrollen	fix	4
Anzahl Umformeinheiten	fix	4
Antriebsleistung Spindeln	ca.	230 kW*
Spindeldrehzahl	max.	1200 min ⁻¹
Spindel-Vorschubhub	max.	425 mm
Spindel-Vorschubkraft	max.	200 kN
Supporthub	radial	4 x 300 mm
Supportkraft	radial	4 x 125 kN

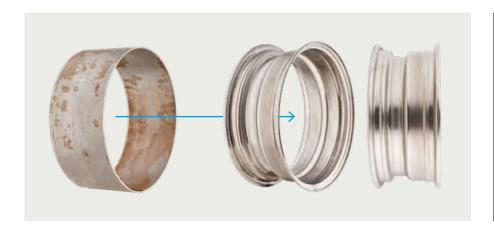
*Master/Slave-gekoppelt

Optional:

- WF-Transfersystem
- · Automatische Strecklängenerfassung und Wandstärkenmessung

Bei der VSTA stehen die 4 Umformrollen in vertikaler Richtung fest. Der Felgenring wird in einem Spannfutter gespannt und dann mittels einer Vertikalbewegung der Hauptspindel durch die Umformrollen bewegt.

Arbeitsraum einer VSTA



1

VABS 520-4

Vertikale Abdreh- und Beschneidestation (VABS) für das Beschneiden und Entgraten von zylindrischen Stahlfelgenringen

Maschine ist Teil des vertikalen Ring-Drückwalzzentrums (RDZ).

Ein solches umfasst:

- Vereinzelung der Felgenringe
- Drückwalzmaschine VSTA 520-4
- Transfer von VSTA zu VABS
- Beschneidemaschine VABS 520-4
- Teileauswurf hinter VABS
- · Vollverkleidung der Anlage

min.	320 mm (12,5")	
max.	520 mm (20,5")	
min.	125 mm (5")	
max.	325 mm (13")	
2 x Gr. 8	DIN 55027	
ca.	15 kW	
max.	250 min ⁻¹	
	2	
	1	
	1	
axial	3 x 210 mm	
radial	3 x 130 kN	
	max. min. max. 2 x Gr. 8 ca. max.	

Optional:

- WF-Transfersystem
- Rotationsfräsköpfe anstatt Beschneiderollen

Gesamtansicht einer VABS

Unser Maschinenpaar VFD und VRB wurde speziell für die kostengünstige Produktion kleiner Chargen von Spezialfelgen für Sonderfahrzeuge entwickelt. Es zeichnet sich durch eine sehr flexible Programmierung der Konturen und durch den schnellen Wechsel von einem Felgentyp zum nächsten aus. Als einziger Produzent weltweit bietet WF Maschinenbau damit die Möglichkeit, hochwertige Räder für ATV (All Terrain Vehicles), Quads, Golf-Caddies und kleinere Stahlfelgen etc. wirtschaftlich und ohne Anschaffung eines Rim-Rollers herzustellen.

Durch den Einsatz einer oder mehrerer Drückrollen auf einer werkzeuglosen Maschine können beinahe beliebige Konturverläufe im Felgenbett hergestellt werden.

Ihre Vorteile durch den Einsatz unserer Spezialfelgenmaschinen:

- Kostenoptimierung: Felgenherstellung ohne Felgenwalzanlage (Rim Roller)
- Flexibilität: Herstellung von Kleinstchargen (ab 4 Räder) unkompliziert und rasch möglich
- Effizienz: schneller Wechsel zwischen unterschiedlichen Felgenformen

Highlights unserer Maschinen:

- Maschinenpaar: Vertikale Felgen-Drückmaschine mit 2 Umformrollen VFD 500 plus vertikale Rand-Bearbeitungsmaschine VRB 500
- Herstellung beinahe beliebiger Konturverläufe von Drop-Centern, Felgenbett und Felgenhorn durch den Einsatz von einer oder mehrerer Drückrollen in einer werkzeuglosen Maschine

${\bf Maschinen be schreibung:}$

- integrierter Ausstoßer traversenseitig zum Losbrechen der Werkstücke
- integrierter Ausstoßer spindelseitig zum einfachen Entnehmen der Werkstücke
- · Vollschutzverkleidung mit je zwei Zugangsmöglichkeiten zum Arbeitsraum

Drückmaschine VFD:

- leistungsstarker, servo-geregelter Spindelantrieb, geeignet für den G96-Betrieb (= konstante Schnittgeschwindigkeit)
- · zwei gegenüberliegende Kreuzsupporte für die Umformung
- · vier CNC-gesteuerte, interpolierende Achsen in den Kreuzsupporten

Randbeschneidemaschine VRB:

- zwei PLC-gesteuerte Bearbeitungseinheiten mit je zwei Kneifrollen zum zeitgleichen Aufweiten beider Felgenränder
- zwei PLC-gesteuerte Bearbeitungseinheiten zum zeitgleichen Bordieren (nach dem Aufweiten) der Felgenränder
- sämtliche mechanische Verstellungen ausgerüstet mit werkzeuglosen Schnellverschlüssen

Ausgezeichnete WF-Kawasaki-Felge

All Terrain Vehicle Räder, hergestellt auf einer WF-Maschine, im Einsatz

VFD 500

Vertikale Felgendrückmaschine (VFD) für das (Freiform-) Drücken von Spezialfelgen für Sonderfahrzeuge

Werkstückdurchmesser
Werkstückdurchmesser
Werkstückbreite
Werkstückbreite
Werkzeugaufnahme
Anzahl Umformrollen
Antriebsleistung Spindel
Spindeldrehzahl
Supporthub
Supporthub
Supportkraft
Supportkraft
Reitstock-Andruckkraft

min.	150 mm (6")
max.	500 mm (19")
min.	150 mm (6")
max.	400 mm (15")
2 x Gr. 8	DIN 55027
fix	2
ca.	90 kW
max.	1000 min ⁻¹
axial	2 x 450 mm
radial	2 x 275 mm
axial max.	2 x 120 kN
radial max.	2 x 120 kN
max.	600 kN

Arbeitsraum einer VFD

Optional:

- WF-Robotersystem zur Be-/Entladung
- · Zwei-Hand-Start zur manuellen Beladung
- Software OPUS zur Generierung des CNC-Programms
- hydraulische Rollenantriebe
- · kann durch einen zentralen Roboter beschickt werden

VRB 500

Vertikale Randbearbeitungsmaschine (VRB) für die Randbearbeitung an Spezialfelgen für Sonderfahrzeuge

	min.	150 mm (6")
	max.	500 mm (19")
Werkstückbreite	min.	150 mm (6")
Werkstückbreite	max.	400 mm (15")
	2 x Gr. 8	DIN 55027
Antriebsleistung Spindel	ca.	70 kW
	max.	1000 min ⁻¹
Anzahl der Aufweit-Einheiten	fix	2
Hub der Aufweit-Einheiten	radial	2 x 100 mm
Hub der Aufweit-Einheit	axial	1 x 150 mm*
Kraft der Aufweit-Einheiten	radial	2 x 275 mm
Anzahl der Bordier-Einheiten	fix	2
- Hub der Bordier-Einheiten	radial	2 x 100 mm
Hub der Bordier-Einheit	axial	1 x 150 mm*
Kraft der Bordier-Einheiten	radial	2 x 80 kN
Reitstock-Andruckkraft	max.	125 kN

27

Arbeitsraum einer VRB

Optional:

- WF-Robotersystem zur Be-/Entladung
- · Zwei-Hand-Start zur manuellen Beladung
- · kann durch einen zentralen Roboter beschickt werden

"Wir bei WF setzen auf Innovation. Ich arbeite gerne mit meinem Team an der Entwicklung der Maschinen und Verfahren von morgen. Gemeinsam finden wir Lösungen, wollen vorausgehen und begeistern und sind stolz, wenn wir eine neue Patentschrift in Händen halten."

Christian Malkemper, Leiter R&D

Ein Blick in unser R&D-Cente

Was uns von anderen Maschinenbauern in unserer Branche unterscheidet, ist unser R&D-Center. Gemeinsam mit unserer Kundschaft entwickeln wir neue Ideen und setzen sie um. Auf vier hochflexiblen Versuchsmaschinen prüfen wir die Umsetzbarkeit neuer Pläne, führen Testreihen durch und ermitteln die Profitabilität des Ergebnisses. Hieraus entstehen immer wieder Patentanmeldungen.

Das Hybrid-Rad – Ein Hybrid aus Aluminium-Frontface und Stahlfelge

Das einteilige Stahlrad – Erfolgreiche Versuchsreihe bei WF

Wir wollen die Zukunft gestalten und arbeiten kontinuierlich an innovativen Lösungen. Ein Auszug unserer aktuellen Arbeit:

· Das Magnesium-Rad

Das Magnesium-Rad ist ca. 30 % leichter als ein vergleichbares Aluminiumrad. Die Umformung von Magnesiumlegierungen und die Entwicklung einer Maschine zur Serienherstellung solcher Räder halten wir für möglich.

· Das Hybrid-Rad (oder auch 2-Komponenten-Rad)

Das Hybrid-Rad ist ein Rad, das die Vorteile eines optisch wertvollen Aluminium-Frontfaces mit denen einer kostengünstigen Stahlfelge kombiniert. Eine Maschine zum Zusammenfügen der Komponenten ist bei uns in Entwicklung.

· Das einteilige Stahlrad

Diverse Testreihen für das einteilige Stahl-Rad laufen in unserer R&D-Abteilung. Es wird komplett aus einer einfachen Stahlronde gefertigt – ohne aufwändige Schweißverbindung und beinahe spanlos.

· Die werkzeuglose Herstellung von gegossenen Aluminiumrädern

Ein gegossenes Aluminiumrad drückwalzen, ohne in aufwendige Werkzeuge zu investieren – hierzu gibt es bei WF bereits ein Maschinenkonzept, welches beinahe beliebige Aluminiumräder herstellen kann.

· Die Herstellung von extrem großen Stahlrädern bis 56" für die Landwirtschaft

In diesem Räderbereich sind die Stückzahlen gering. Aufgrund der extremen Größen sind Maschinen zur automatischen Fertigung sehr teuer. Deren kostenoptimale Produktion ist eine weitere Herausforderung für unser R&D-Center.

Speziell in den genannten Bereichen, aber auch in vielen anderen, sehen wir große Entwicklungsmöglichkeiten. Sie haben eine Vision? Sie suchen eine bestimmte Lösung? Sie wollen wissen, was möglich ist?

Sprechen Sie uns an!

	Leistungen	★ Basic	★★ Advanced	★★★ Excellence
Schulung	Schulung "Betrieb allgemein" Bedienung der Maschine im Zuge der Vorabnahme bei WF	•	•	•
	Schulung I "Maschinenbedienung" Maschinenbedienung im Detail, Umgang mit Betriebsmitteln, Rüsten, Werkzeugwechsel, Programmierung		•	•
	Schulung II "Maschinenwartung" Maschinenwartung, Einweisung in technische Unterlagen, Fehlerdiagnose, Störungsbeseitigung		•	•
	Schulung III "Programmierung/Umformverfahren" Programmierung, Umformverfahren oder individuell nach Kundenbedarf			•
	Schulung "Follow-up" ca. 2-6 Monate nach der Inbetriebnahme, um Bedienung und Umgang mit der Maschine weiter zu optimieren			•
Wartung	Info bei Ersatzteilengpässen insbes. bei Produktabkündigungen oder Lieferengpässen unserer Zulieferer		•	•
	Ersatzteilpaket I enthält Ersatzteile, die für die ersten ca. 4.000 Betriebsstunden empfohlen sind		•	
	Ersatzteilpaket II enthält Ersatzteile, die für die ersten ca. 8.000 Betriebsstunden empfohlen sind			•
	Remote-Inspektion Online-Maschinenüberprüfung zur Zustandsfeststellung und ggf. Fehlerauswertung		•	•
	Wartungsvertrag komplette Wartung der Maschine vor Ort nach Wartungsvertrag/-intervall			•
Fehlerfall	Service-Hotline	•	•	•
	Fehlerdiagnose Online		•	•
	Fehlerdiagnose Vor-Ort			•
	Gewährleistung (in Monaten)	12	18	24

Mit unseren Servicepaketen sorgen wir für einen langfristigen und zuverlässigen Betrieb Ihrer Anlage. Das Paket "Smart" ist in unseren Standard-Angeboten immer enthalten. Für kundenspezifische Pakete sprechen Sie uns bitte an!

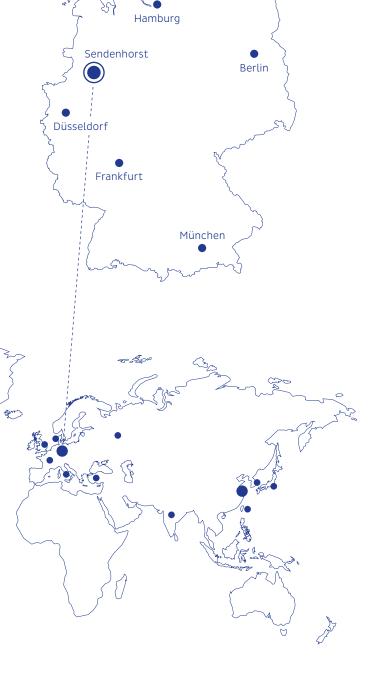
Weitere Leistungen	
Automatisierung (Fördersysteme)	Nachrüstung von Be-/Entlade-Systemen, Handling-Robotern und Transferanlagen
Generalüberholung	zur Minimierung des Ausfallsrisikos und Wartungsaufwandes sowie zur Sicherstellung von regulärem Produktionsbetrieb
zusätzliche Serviceleistungen	Nachrüsten von zusätzlichen Maschinenfunktionen individuell nach Kundenbedarf
	Produktentwicklungen , Machbarkeitsstudien und Grundsatzversuche in unserem R&D-Center
	Kleinserien zur Überbrückung maschineller Engpässe bzw. Auftragsspitzen, Ausführung von Kleinstaufträgen
	Workshop "WF-Futurezone" – Was ist noch möglich? SIE gestalten die Zukunft in Ihrer Branche!
SMART FORMING Tools	SMART FORMING Assistant zur Simulation und Generierung von NC-Programmen aus CAD-Zeichnungen
	SMART FORMING Viewer zur Auswertung der aktuellen Umformkräfte, zur Vermeidung von Kraftspitzen und Minimierung des Rollenverschleißes
	SMART FORMING Cam zur Überwachung von Prozessabläufen anhand eines HD-Kamerasystems

SMART FORMING Diagnostics zur kontinuierlichen Maschinen-Selbstdiagnose (Industrie 4.0), Sensoren und Softwaremodule zur vorbeugenden Instandhaltung

Unsere zusätzlichen Serviceleistungen buchen Sie je nach Bedarf. Für mehr Informationen wenden Sie sich gerne direkt an uns!

FORMING EXCELLENCE

WF Maschinenbau und Blechformtechnik GmbH & Co. KG


Schörmelweg 23-27 48324 Sendenhorst, Deutschland Telefon +49 2526 9302-0 info@wf-maschinenbau.com

WF Machinery, Inc.

627 Estes Avenue Schaumburg, Illinois 60193, USA Telefon +1 847 230 4377 agildemeister@wf-northamerica.com

WF China

No. 15 Building Sanli Jian-Xin-Yuan Room 2-701 Fengtai district Beijing 100068, China Telefon +86 21 6575 7369 info-china@wf-maschinenbau.com

Wir sind weltweit vertreten in

China – Deutschland – Dänemark – England – Frankreich – Indien – Italien – Japan – Kanada – Korea – Mexiko – Russland – Taiwan – Türkei – USA